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The last two equations should be the same and hence

_ £1r2 + £2r1
eq —rl T, (3.73)
__hh
S (3.74)
We can put these equations in a simpler way,
Lt 11
Ty N T (3.75)
b _&, &
Moo R (3.76)

In Fig. (3.21), we had joined the positive terminals
together and similarly the two negative ones, so that the
currents I, I, flow out of positive terminals. If the negative
terminal of the second is connected to positive terminal
of the first, Egs. (3.75) and (3.76) would still be valid with
£, —&,

Equations (3.75) and (3.76) can be extended easily.
If there are n cells of emf ¢, . . . £ and of internal
resistances r,... r, respectively, connected in parallel, the
combination is equivalent to a single cell of emf g,,and
internal resistance Top such that

Gustav Robert Kirchhoff
(1824 - 1887) German
physicist, professor at
Heidelberg and at
Berlin. Mainly known for
his development of
spectroscopy, he also
made many important
contributions to mathe-
matical physics, among
them, his first and
second rules for circuits.
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r.on T (3.77)
eq 81 n

- ; Tt . (3.78)
eq n

3.13 KIrRcHHOFF’S RULES

Electric circuits generally consist of a number of resistors and cells
interconnected sometimes in a complicated way. The formulae we have
derived earlier for series and parallel combinations of resistors are not
always sufficient to determine all the currents and potential differences
in the circuit. Two rules, called Kirchhoff’s rules, are very useful for
analysis of electric circuits.

Given a circuit, we start by labelling currents in each resistor by a
symbol, say I, and a directed arrow to indicate that a current I flows
along the resistor in the direction indicated. If ultimately I is determined
to be positive, the actual current in the resistor is in the direction of the
arrow. If I turns out to be negative, the current actually flows in a direction
opposite to the arrow. Similarly, for each source (i.e., cell or some other
source of electrical power) the positive and negative electrodes are labelled,
as well as, a directed arrow with a symbol for the current flowing through
the cell. This will tell us the potential difference, V=V (P)-V(N)=¢e-1Ir 115
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[Eq. (3.57) between the positive terminal P and the negative terminal N; I
here is the current flowing from N to P through the cell]. If, while labelling
the current I through the cell one goes from P to N,
300 then of course
V=e+Ir (3.79)

Lt ) Having clarified labelling, we now state the rules
and the proof:
c L a (a) Junction rule: At any junction, the sum of the
A5 currents entering the junction is equal to the
U sum of currents leaving the junction (Fig. 3.22).
209 This applies equally well if instead of a junction of
several lines, we consider a point in a line.

& The proof of this rule follows from the fact that
when currents are steady, there is no accumulation
of charges at any junction or at any point in a line.
Thus, the total current flowing in, (which is the rate
h current entering is I,. There is only one at which charge flows 'into the junction), must equal

current leaving h and by junction rule the total current flowing out.
that will also be I,. For the loops ‘ahdcba’ (b) Loop rule: The algebraic sum of changes in
and ‘ahdefga’, the loop rules give -30I, — potential around any closed loop involving
41 I, + 45 =0 and -30I, + 21 [, - 80 = 0. resistors and cells in the loop is zero (Fig. 3.22).
This rule is also obvious, since electric potential is
dependent on the location of the point. Thus starting with any point if we
come back to the same point, the total change must be zero. In a closed
loop, we do come back to the starting point and hence the rule.

o=

FIGURE 3.22 At junction a the current
leaving is I, + I, and current entering is I,.
The junction rule says I, = I, + [,. At point

Example 3.6 A battery of 10 V and negligible internal resistance is
connected across the diagonally opposite corners of a cubical network
consisting of 12 resistors each of resistance 1 Q (Fig. 3.23). Determine
the equivalent resistance of the network and the current along each
edge of the cube.

ExamPLE 3.6

116 FIGURE 3.23
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Solution The network is not reducible to a simple series and parallel
combinations of resistors. There is, however, a clear symmetry in the
problem which we can exploit to obtain the equivalent resistance of
the network.
The paths AA’, AD and AB are obviously symmetrically placed in the
network. Thus, the current in each must be the same, say, I. Further,
at the corners A’, B and D, the incoming current I must split equally
into the two outgoing branches. In this manner, the current in all
the 12 edges of the cube are easily written down in terms of I, using
Kirchhoff’s first rule and the symmetry in the problem.
Next take a closed loop, say, ABCC’EA, and apply Kirchhoff's second
rule:

-IR-(1/2)IR-IR+¢e=0
where R is the resistance of each edge and ¢ the emf of battery. Thus,

£=§IR
2

The equivalent resistance R, of the network is
e b

“ 31 6
For R=1 Q, Req = (5/6) Q and for € = 10 V, the total current (= 3I) in
the network is

3I=10V/(5/6) Q=12 A,ie.,[=4 A
The current flowing in each edge can now be read off from the
Fig. 3.23.

It should be noted that because of the symmetry of the network, the
great power of Kirchhoff's rules has not been very apparent in Example 3.6.
In a general network, there will be no such simplification due to
symmetry, and only by application of Kirchhoff’s rules to junctions and
closed loops (as many as necessary to solve the unknowns in the network)
can we handle the problem. This will be illustrated in Example 3.7.

Example 3.7 Determine the current in each branch of the network
shown in Fig. 3.24.

FIGURE 3.24
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ExampPLE 3.7

Solution Each branch of the network is assigned an unknown current
to be determined by the application of Kirchhoff's rules. To reduce
the number of unknowns at the outset, the first rule of Kirchhoff is
used at every junction to assign the unknown current in each branch.
We then have three unknowns I, I, and I, which can be found by
applying the second rule of Kirchhoff to three different closed loops.
Kirchhoff’'s second rule for the closed loop ADCA dives,

10-4(I-1L) +2(,+ I,-I) -1, =0 [3.80(a)]
that is, 7I,— 61, — 2I, = 10
For the closed loop ABCA, we get

10-4L-2 (L, +1)-1,=0
that is, I, + 61, + 21, =10 [3.80(b)]
For the closed loop BCDEB, we get

5-2(,+L)-2(I,+L,-1)=0
that is, 2I, - 41, - 41, = -5 [3.80(c)]

Equations (3.80 a, b, c¢) are three simultaneous equations in three
unknowns. These can be solved by the usual method to give
5
=25A L=2A L= 1% A
The currents in the various branches of the network are

1
AB:EA, CA:2- A DEB:1L A
8 2 8

2
It is easily verified that Kirchhoff's second rule applied to the
remaining closed loops does not provide any additional independent
equation, that is, the above values of currents satisfy the second
rule for every closed loop of the network. For example, the total voltage
drop over the closed loop BADEB

5V+(§x4)V— (EXAL)V
8 8

equal to zero, as required by Kirchhoff's second rule.

7 1
AD:lgA, CD:0A, BC:2- A

3.14 WHEATSTONE BRIDGE

As an application of Kirchhoff’'s rules consider the circuit shown in
Fig. 3.25, which is called the Wheatstone bridge. The bridge has
four resistors R|, R,, R, and R,. Across one pair of diagonally opposite
points (A and C in the figure) a source is connected. This (i.e., AC) is
called the battery arm. Between the other two vertices, B and D, a
galvanometer G (which is a device to detect currents) is connected. This
line, shown as BD in the figure, is called the galvanometer arm.

For simplicity, we assume that the cell has no internal resistance. In
general there will be currents flowing across all the resistors as well as a
current I, through G. Of special interest, is the case of a balanced bridge
where the resistors are such that I, = 0. We can easily get the balance
condition, such that there is no current through G. In this case, the
Kirchhoff's junction rule applied to junctions D and B (see the figure)
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